Ansys Mechanical 進階 應用_新技術線上研討會

虎門科技技術團隊

黃國豐

子模型分析 Substructuring

What is Substructuring?

$$[\hat{M}]\{\hat{\hat{u}}\}+[\hat{C}]\{\hat{\hat{u}}\}+[\hat{K}]\{\hat{\hat{u}}\}=\{\hat{F}\}$$

where:

 $[\hat{K}] = [T]^T [K] [T] = \text{reduced stiffness matrix}$

 $[\widehat{M}] = [T]^T [M] [T] = \text{reduced mass matrix}$

 $[\hat{C}] = [T]^T [C] [T] = reduced damping matrix$

 $\hat{\{F\}} = [T]^T \{F\}$ = reduced load vector

Why Substructuring?

Table 2: Comparison of CPU and Elapsed Times for Modal Analysis

Number of Modes = 100	Full Model	CMS Fixe	d Interface
CPU Time (s)	2034.280	Gen Pass	2022.670
		Use Pass	4.630
Elapsed Time (s)	1291.000	Gen Pass	1336.000
		Use Pass	3.000

Table 22.4: Comparison of CPU and Elapsed Times for Harmonic Analysis

Number of Modes = 20	Full Model	CMS Fixed Interface		
CPU Time (s)	13580.800	Gen Pass	2022.670	
		Use Pass	1758.800	
Elapsed Time	7866.000	Gen Pass	1336.000	
(S)		Use Pass	1764.000	

Submodeling

Two methods of doing this

 Substructuring analysis (Guyan reduction): Static reduction which reduces the system matrices to a smaller set of nodal DOFs. Substructuring analysis applies to structural and nonstructural analysis types. For structural analysis, this condensation method is also called Guyan reduction

Component mode synthesis (CMS): reduces the system matrices to a smaller set of nodal DOFs complemented by a set of generalized coordinates. CMS applies to structural analysis only. CMS is more accurate than the Guyan reduction for modal, harmonic, and transient analyses because CMS includes truncated sets of normal mode generalized coordinates, which capture the basic modal characteristics of the components.

Supported Analysis Types

- Harmonic Response (MSUP only)
- Modal
- Random Vibration
- Response Spectrum
- Rigid Dynamics

How to proceed substructuring?

How to proceed substructuring?

• Top-down Substructuring:

• Bottom-up Substructuring:

Condensed part

Substructure Generation

Substructure Generation

W	Worksheet 👻 🕈 🕇 🗙								
5	Substructure Definition								
E		1							
L	Clear								
				Interfaces					
	Name	Scope Method	Environment Name	Source	Туре	Condition	Side		
L	Fixed Support	Geometry Selection	Substructure Generation	Manual	General	Named Selection	N/A		
L								1	

Coupled Field Static Analysis

Coupled Field Static Analysis

 Piezoelectric coupling and Acoustics physics is supported for Coupled Field Static analysis

Physics Region and Analysis Settings

- PML settings are supported for respective Acoustics physics in the Physics region object
- Voltage and Charge convergence supported on Analysis settings
 - Program Controlled
 - On
 - Remove

D	Details of "Physics Region" 👻 🕇 🗖 🗙							
=	Scope							
	Scoping Method	Geometry Selection						
	Geometry	All Bodies						
Ξ	Definition							
	Structural	No						
	Acoustics	Yes						
	Thermal	No						
	Electric	No						
	Suppressed	No						
63	Acoustic Domain Definition							
	Artificially Matched Layers	Off						
	Element Morphing	Program Controlled						
8	Advanced Settings							
	Reference Pressure	2.e-005 Pa						
	Reference Static Pressure	1.0133e+005 Pa						
	Fluid Behavior	Compressible						

	🗄 🥠 🔚 Coupled Field	Static (A5)								
	T=0 Initial Physics Options									
	Physics Region									
D	etails of "Analysis Settings"	▼ ₽ □ >	×							
+	Step Controls									
+	Solver Controls									
+	Restart Controls									
Ξ	Nonlinear Controls									
	Newton-Raphson Option	Program Controlled								
	Force Convergence	Program Controlled								
	Moment Convergence	Program Controlled								
	Displacement Convergence	Program Controlled Program Controlled Program Controlled								
	Rotation Convergence									
	Line Search									
	Stabilization	Program Controlled								
	Voltage Convergence	Program Controlled								
	Charge Convergence Program Controlled									
ŧ	Advanced									
+	Output Controls									
Ξ	Damping Controls									
	Ignore Acoustic Damping	Yes								
+	Analysis Data Management									

Boundary Conditions

• Electric and Acoustics boundary conditions are supported

• Electric results and probes are

supported

	Insert	•		Deformation	•		
	Go To	•		Strain	►		
8	Filter Tree Based On Visible Bodies			Stress			
•	Isometric View			Energy			
*	Set			Linearized Stress	►		
2	Restore Default	н		Electric	•	۰	Electric Voltage
٢	Zoom To Fit	F7		Stress Tool	►	9	Total Electric Field Intensity
۲	Zoom To Selection	Z		Contact Tool	►	9	Directional Electric Field Intensity
۲	Image to Clipboard C	trI+C		Bolt Tool	►	9	Total Electric Flux Density
	Cursor Mode	•		Probe	►	%	Directional Electric Flux Density
	View	•		Coordinate Systems	•	9	Joule Heat
6	Select All C	trl+A	1	Volume			
R	Select Mesh by ID	м	сv Г	User Defined Result	acult		
			USER	oser Denned Kesuit			
			ĒĊ	Commands			
			敓	Energy Vector			

Pre-stress Coupled Field Analysis Enhancements

• Pre-stressed Coupled Field Modal and Pre-stress Coupled Field Harmonic (full harmonic) is supported by linking to upstream a Coupled Field Static analysis

Pre-stress Coupled Field Enhancements

- The physics combination which can be performed in Pres-stress Coupled Field analysis are:
 - Structural Acoustics
 - Structural Electric with Piezoelectric coupling
 - \circ $\,$ Acoustics with Piezoelectric coupling $\,$
- Physics region specified in the upstream coupled field static analysis will be automatically selected on downstream linked environment.
- Thermal physics selection in the coupled field static analysis will not support pre-stress workflow
- Linking on Coupled Field Modal and Harmonic can be done by selecting the pre-stress environment on the Initial conditions

Imported Heat Generation Load from Coupled Field Harmonic

- Loss due to damping in the upstream Coupled Field Harmonic analysis can be imported as Heat Generation load in Transient Thermal analysis by linking the solution cell of Coupled Field Harmonic to setup of Transient Thermal analysis
- The losses are only considered from the coupled structural-electric bodies with Piezoelectric coupling and is applicable for dissimilar meshes. The source frequencies is split over equal time intervals in the transient thermal analysis when All option is selected from Worksheet of Imported Heat generation object

Prestress Wire Bonding Ultrasonic Transducer

Define physics region

Harmonic result

非線性自適應網格劃分技 術(NLAD)介紹

Imported Temperature

			9	
		FF F		
				111111111111111111111111111111111111111

/ With and Without "Apply to initial mesh"

